- 8. w. JOST, "Diffusion in Solids, Liquids, Gases" (Academic Press, New York, 1952) p. 218.
- 9. S. J. BERCOVICI and P. NIESSEN, *Trans. Met. Soc.* AIME 245 (1969) 2591.
- 10. K. STRÁNSKÝ and A. REK, Hutnické Listy 24 (1969) 734.

Hollow Crystals of CdSe

An open-tube technique to grow hollow prisms of CdSe is reported.

Under particular conditions, hollow crystals of II-VI compounds have been deposited from the vapour phase. Up to now it is not clear which growth mechanism is responsible for this anomalous morphology, since a broad variety of experimental conditions have been invoked.

Hollow forms of ZnS were first described [1]. Then many authors referred to the growth of hollow crystals of CdS employing open-tube techniques [2-5] as well as static techniques [6-7]. In many cases the presence of impurities seems to play an important role and hollow crystals of CdS doped with Na [2, 4], Ga or In [3], or I [5] have been successfully prepared.

Here we shall refer on the growth of hollow CdSe crystals, obtained by an open-tube technique without any added impurity.

20 g of CdSe powders (99.999% pure) purchased from E. Merck AG, were placed in the middle of a 120 cm long, 2 cm-inner diameter quartz tube and kept well packed by quartz wool. The charge is heated at 1048 \pm 1°C while a very rapid flow of argon (8 to 10 1/h) is forced to pass through the charge. In a colder zone of the tube (700 to 750°C) hollow prisms, like those reported in fig. 1, are deposited in about eight hours, together with platelets and solid prisms. All the crystals are grown radially from a polycrystalline crust which coats the inner walls of the tube. The size of the hollow prisms is ranging from 8 to 12 mm in length and 0.4 to 2.5 mm in width. A spectrochemical analysis did not reveal a difference in the impurity content among the various forms of crystals.

Acknowledgement

This work was supported by Gruppo Nazionale di Struttura della Materia del CNR. The author is indebted to Mr G. Zuccalli for help in preparing the crystals. Received 6 June and accepted 1 July 1970.

T. ZEMĈIK P. NIESSEN Department of Mechanical Engineering University of Waterloo Waterloo, Ontario, Canada

Figure 1 Some hollow prisms (supported in wax for the photograph).

References

- 1. E. J. SOXMANN, J. Appl. Phys. 34 (1963) 948.
- 2. D. H. MASH and F. FIRTH, ibid 34 (1963) 3636.
- 3. J. WOODS, Brit. J. Appl. Phys. 10 (1959) 529.
- 4. C. PAORICI, J. Crystal Growth 2 (1968) 324.
- 5. Idem, ibid 5 (1969) 315.
- 6. A. DREEBEN, J. Appl. Phys. 35 (1964) 2549.
- 7. H. FUJISAKI, M. TAKAHASHI, H. SHOJI, and Y. TANABE, J. Appl. Phys. 2 (1963) 665.

Received 12 June and accepted 15 July 1970 C. PAORICI Instituto di Fisica dell' Università 43100 Parma, Italy © 1970 Chapman and Hall Ltd.

918